Importance of high-quality biowaste

Steffen Walk – Scientific Officer of ECN

30.04.2024

www.compost-digestate.info

The European Compost Network

Circularity &
Sustainability
is at the heart
of everything
we do

67 Members from 28 European Countries

≈ 48 M tpa Treatment Capacity

> 4.500 Composting & Anaerobic Digestion Plants

EU LIFE BIOBEST project

"Guiding the mainstreaming of best biowaste recycling practices in Europe"

Preparing the basis for **EU guidance and standardization** on closing the gap in the biological cycle to enrich soils with high quality compost from collected organic waste in support of nature and biodiversity

EU Interreg project CORE

Best practices in biowaste treatment

'Composting in Rural Ecosystems'

Objectives

- Mainstreaming composting in rural areas
- Develop best practices
- Promoting circular bioeconomy
- Project website
 - https://www.interregeurope.eu/core-0#
- Social media: #COREinterreg

The importance of high quality biowaste

Main challenges in collection and treatment

The importance of high quality biowaste

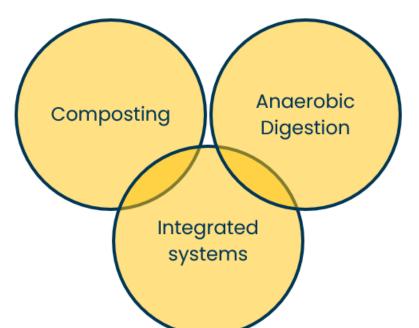
Main challenges in collection and treatment

Why do we need high-quality biowaste?

- Dependency of product quality on feedstock quality

 The lower the impurities in the input material (e.g., plastics) the higher the potential for high-quality products
- Treatment technology can partly remove impurities, however, also organic material is removed

The importance of high quality biowaste



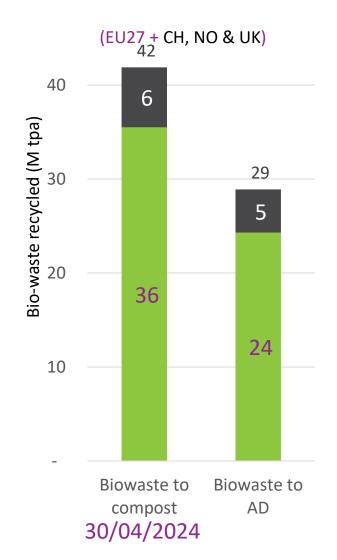
Main challenges in collection and treatment

General process options for biowaste treatment

- In general, the 3 most applied treatment technologies are composting, anaerobic digestion and a combination of both
- All of them have their specific benefits, depeding on the local circumstances and national/regional targets
- Each process offers different levels of technical complexity, reaching from low-tech, e.g., open windrow composting to high-tech, e.g., indoor composting with automated ventilation and pile turning.

Guideline to promote quality compost and digestate (LIFE BIOBEST Project, to be published soon)

compost-digestate.eu



30/04/2024

Compost and Digestate production from separately collected biowaste

71 M tpa

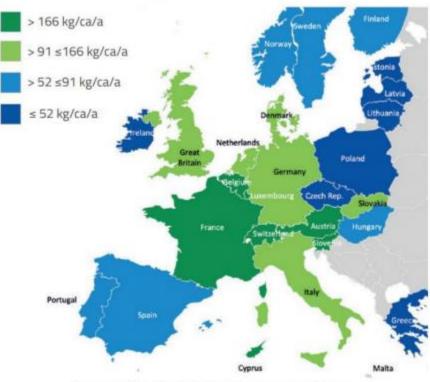
BIO-WASTE RECYCLED

21 M tpa

COMPOST PRODUCED

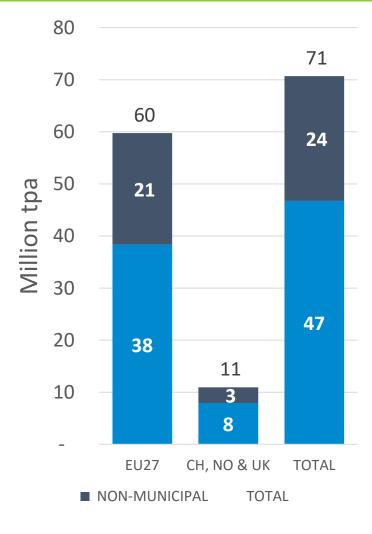
Surface area (million ha)	Fraction of Arable Land	Fraction of Mod./ Severely Eroded Land	
2.1	2%	16%	

1.2 M t CO₂-eq sequestered on agricultural soils every year


19.1 million
urban tree
seedlings grown
for 10 years

Main challenges in collection

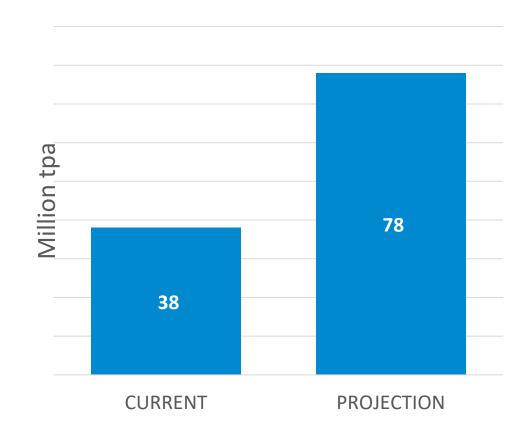
- Only 43% of municipal biowaste was collected separately, while 57% of it ended up in mixed municipal waste (EEA), Food waste only 16% collected separately (BIC)
- Residual waste still comprises 39% biowaste, mostly food waste (UBA)
- Out of 60 Mio t a⁻¹ of **food waste** generated in the EU, **50 Mio t a⁻¹ are not delivered to high-quality recycling (ECN)**
- **Contamination** (e.g. Plastics) can be very high, especially in user-unfriendly collection systems such as open street containers (bring points) as opposed to door-to-door systems
- Many EU-MS still haven't introduced a nationwide collection system


BIO-WASTE COLLECTED PER CAPITA IN SELECTED COUNTRIES GROUPED INTO QUARTILES (kg/capita/annum)

Sources: ECN & EEA data. Excludes derived estimates

Municipal Biowaste – Potentials to achieve 65% recycling target

EU TARGET TO
RECYCLE 65% MSW BY
2035


17% to 35% needed through bio-waste

Extra 40 M tpa

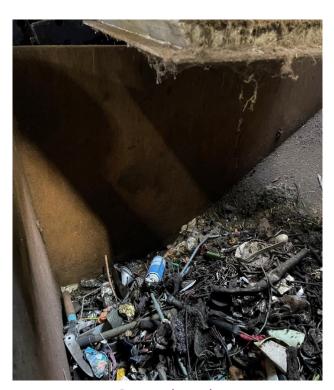
MUNICIPAL BIOWASTE

has to be separately

collected!

30/04/2024

Main challenges in treatment


- Depends on the feedstock composition, especially the level of impurities
- Intense pre- and post-treatment may be required
- The issue of biodegradable plastics: Degradation time often longer than actual treatment time

Poor quality biowaste

Drum screen (size separation)

Removed metals

13

Best practices in biowaste treatment

Small-scale composting plant of Mancomunitat La Plana (Catalonia, Spain)

Composting plant of Mancomunitat La Plana (porta a porta, 2023)

Opened in 2023 Serves ca. 34,000 inhabitans

Input: 1.500 t/yr

Output: 18 - 20% of input

Input quality: <1% impurities

Quality analysis	Bio-waste compost	
Sample size	1	
Particle size [mm]	<10	
Total Impurities [%]	-	
Glass [%]	<0.1	
Plastics [%]	<0.1	

Best practices in biowaste treatment

Large-scale anaerobic digestion and composting plant of Borken district (Germany)

Recycling- & Bioenergie Center of Gescher Entsorgungsgesellschaft Westmünsterland (Borken district, Germany)

Gescher bio-waste treatment facility (EGW, n.d.)

30/04/2024

Serves around 1,6 Mio. Inhabitants (3 districts)

Input: ca. 105,000 t/yr

Output: Biogas + Compost: ca. 38,000 t/yr &

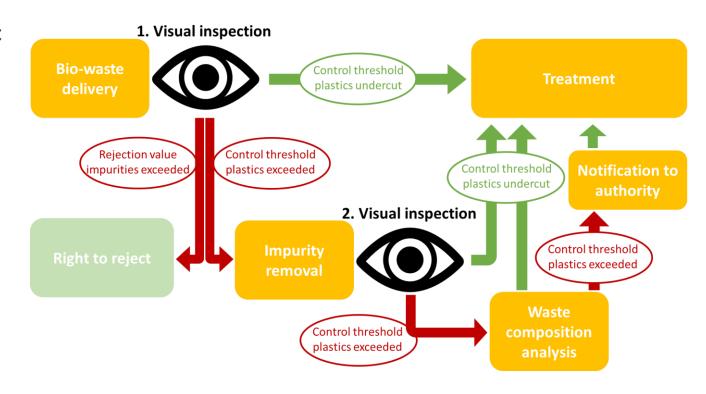
Woody biomass: ca. 6,500 t/yr

Input quality: 2-3% impurities

Quality analysis	Limit threshold	Garden waste compost	Bio-waste compost
Sample size		35	30
Particle size [mm]	-	15	10
Total Impurities [%]	0.5	0.04	0.05
Glass [%]	-	0.01	0.05
Plastics [%]	0.1	< 0.01	< 0.01
Surface index [cm²/L]	15	0.6	1.7

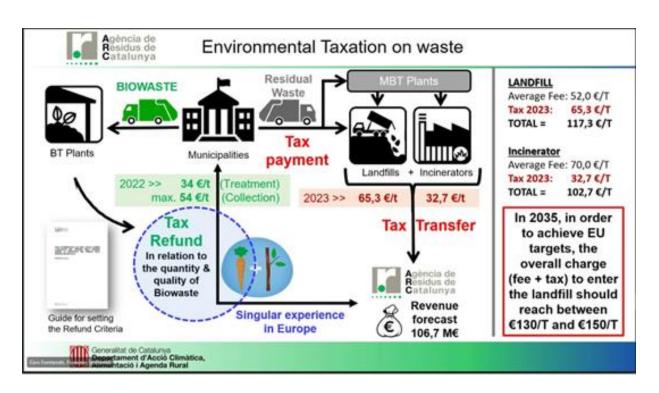
The importance of high quality biowaste

Main challenges in collection and treatment



Policies to improve quality

Germany – Biowaste ordinance


- Limit value for overall impurities (3%) and plastic impurities (1%) at gate of treatment
- Allows the plant operator to reject a delivery with highly contaminated biowaste
- Methodology for a visual inspection implemented by the national body for quality assurance (Bundesgütegemeinschaft Kompost)

Policies to improve quality

Catalonia (Spain) – Biowaste monitoring scheme

- Economic instrument integrated into the regional waste policy
- Landfill tax and refund system
- Municipalities pay a tax on landfill and incinerations
- A factor in the calculation of the refund for the landfill tax depends on the quantity and quality of separately collected biowaste
- Limit for max. contamination decreases annualy

Many thanks for your attention!

walk@compostnetwork.info

www.compost-digestate.info